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We apply Tsallis’q-indexed entropy to formulate a nonextensive random matrix theory, which may be
suitable for systems with mixed regular-chaotic dynamics. The joint distribution of the matrix elements is given
by folding the corresponding quantity in the conventional random matrix theory by a distribution of the inverse
matrix-element variance. It keeps the basis invariance of the standard theory but violates the independence of
the matrix elements. We consider the subextensive regime ofq more than unity in which the transition from the
Wigner to the Poisson statistics is expected to start. We calculate the level density for different values of the
entropic index. Our results are consistent with an analogous calculation by Tsallis and collaborators. We
calculate the spacing distribution for mixed systems with and without time-reversal symmetry. Comparing the
result of calculation to a numerical experiment shows that the proposed nonextensive model provides a
satisfactory description for the initial stage of the transition from chaos towards the Poisson statistics.
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I. INTRODUCTION

The past decade has witnessed a considerable interest de-
voted to nonconventional statistical mechanics. Much work
in this direction followed the line initiated by Tsallis’ seminal
paperf1g. The standard statistical mechanics is based on the
Shannon entropy measureS=−Sipi ln pi swe use Boltz-
mann’s constantkB=1d, wherehpij denotes the probabilities
of the microscopic configurations. This entropy is extensive.
For a composite systemA+B, constituted of two indepen-
dent subsystemsA and B such that the probabilitypsA+Bd
=psAdpsBd, the entropy of the totalSsA+Bd=SsAd+SsBd.
Tsallis proposed a nonextensive generalization:Sq=s1
−Sipi

qd / sq−1d. The entropic indexq characterizes the degree
of extensivity of the system. The entropy of the composite
systemA+B, the Tsallis’ measure verifies

SqsA + Bd = SqsAd + SqsBd + s1 − qdSqsAdSqsBd, s1d

from which the denunciation nonextensive comes. Therefore
SqsA+Bd,SqsAd+SqsBd if q.1. This case is called subex-
tensive. Ifq,1, the system is in the superextensive regime.
The standard statistical mechanics recovered forq=1. Appli-
cations of the Tsallis formalism covered a wide class of phe-
nomena; for a review please see, e.g.,f2g. However, the re-
lation between the parameterq and the underlying
microscopic dynamics is not fully understood yet. The value
of q has been obtained from studies of dynamics in cases of
low-dimensional dissipative mapsf3,4g, and in some toy
models of self-organized criticalityf5g. Explicit expressions
for q in terms of physical quantities exist in few cases, e.g.,
in turbulence problemsf6g and physics of the solar plasma
f7g. Aringazian and Mazhitovf8g obtained a Tsallis distribu-
tion function for a smaller subsystem weakly interacting with
the remaining “quasi-thermostat” composed of a larger num-
ber M of particles, with an entropic indexq−1,1/M.

A number of recent publications considered the possibility
of a nonextensive generalization to the random matrix theory
sRMTd f9g. This is the statistical theory of random matrices
H whose entries fluctuate as independent Gaussian random

numbers. The matrix-element distribution has been obtained
by extremizing Shannon’s entropy subject to the constraint
of normalization and existence of the expectation value of
TrsH†Hd f10g. What has become known as the Bohigas-
Giannoni-Schmidt conjecture is that the quantum spectra of
classically chaotic systems are correlated according to RMT,
whereas the spectral correlations of classically regular sys-
tems are close to Poissonian statisticsf11g. Several attempts
have been made to extend the applicability of RMT to in-
clude quantum systems with mixed regular-chaotic classical
dynamics; for a review please seef12g. For example, the
principle of maximum entropy was used for this purpose by
introducing additional constraints concerning the off-
diagonal elementsf13g. Nonextensive generalizations of
RMT, on the other hand, extremize Tsallis’ nonextensive en-
tropy, rather than Shannon’s. The first attempt in this direc-
tion is probably due to Evans and Michaelf14g. Toscanoet
al. f15g constructed a non-Gaussian ensemble by minimizing
Tsallis’ entropy and obtained expressions for the level densi-
ties and spacing distributions. Bertuolaet al. f16g have
shown that Tsallis’ statistics interpolate between RMT and an
ensemble of Lévy matricesf17g that have a wide range of
applications. They illustrated the spectral fluctuations in the
subextensive regime by considering the gap functionEssd
that gives the probability of finding an eigenvalue-free seg-
ment of lengths. Analytical expressions for the level-spacing
distributions of mixed systems belonging to the three sym-
metry universality classes are obtained inf18g. A slightly
different application of nonextensive statistical mechanics to
RMT is due to Nobre and Souzaf19g.

In this work we use the integral representation of the
gamma function to express the characteristics of the pro-
posed nonextensive RMT in terms of integrals involving the
characteristics of the conventional theory. We show that non-
extensive statistics provides a principled way to accommo-
date systems with mixed regular-chaotic dynamics.

II. NONEXTENSIVE GENERALIZATION OF RMT

RMT replaces the Hamiltonian of the system by an en-
semble of Hamiltonians whose matrix elements are indepen-
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dent random numbers. Dysonf20g showed that there are
three generic ensembles of random matrices, defined in terms
of the symmetry properties of the Hamiltonian. Time-
reversal-invariant quantum system are represented by a
Gaussian orthogonal ensemblesGOEd of random matrices
when the system has rotational symmetry and by a Gaussian
symplectic ensemblesGSEd otherwise. Chaotic systems
without time reversal invariance are represented by the
Gaussian unitary ensemblesGUEd. The dimensionb of the
underlying parameter space is used to label these three en-
sembles: for GOE, GUE, and GSE,b takes the values 1, 2,
and 4, respectively. Balianf10g derived the weight functions
PbsHd for the three Gaussian ensembles from the maximum
entropy principle postulating the existence of a second mo-
ment of the Hamiltonian. He applied the conventional Shan-
non definition for the entropy to ensembles of random ma-
trices asS=−edHPbsHdln PbsHd and maximized it under the
constraints of normalization ofPbsHd and fixed mean value
of TrsH†Hd. He obtainedPbsHd~expf−h TrsH†Hdg which is
a Gaussian distribution with inverse variance 1/2h. In this
section, we apply the maximum entropy principle, with Tsal-
lis’ entropy, to random-matrix ensembles belonging to the
three canonical symmetry universalities. The Tsallis entropy
is defined for the joint matrix-element probability density
Pbsq,Hd by

SqfPbsq,Hdg = S1 −E dHfPbsq,HdgqDY sq − 1d. s2d

We shall refer to the corresponding ensembles as the Tsallis
orthogonal ensemblesTsOEd, the Tsallis unitary ensemble
sTsUEd, and the Tsallis symplectic ensemblesTsSEd. For q
→1, Sq tends to Shannon’s entropy, which yields the canoni-
cal Gaussian orthogonal, unitary, or symplectic ensembles
sGOE, GUE, GSEd f9,10g.

There is more than one formulation of nonextensive sta-
tistics which mainly differ in the definition of the averaging.
Some of them are discussed inf21g. We apply the most re-
cent formulationf22g. The probability distributionPbsq,Hd
is obtained by maximizing the entropy under two conditions,

E dHPbsq,Hd = 1, s3d

E dHfPbsq,HdgqTrsH†Hd

E dHfPbsq,Hdgq

= sb
2 , s4d

where sb is a constant. The optimization ofSq with these
constraints yields a power-law type forPbsq,Hd

Pbsq,Hd = Z̃ q
−1f1 + sq − 1dh̃qhTrsH†Hd − sb

2jg−1/sq−1d, s5d

whereh̃q.0 is related to the Lagrange multiplierh associ-
ated with the constraint in Eq.s4d by

h̃q = hYE dHfPbsq,Hdgq s6d

and

Z̃q =E dHf1 + sq − 1dh̃qhTrsH†Hd − sb
2jg−1/sq−1d. s7d

It turns out that the distributions5d can be written hiding the
presence ofsb

2 in a more convenient form

Pbsq,Hd = Z q
−1f1 + sq − 1dhq TrsH†Hdg−1/sq−1d, s8d

where

hq =
h

E dHfPbsq,Hdgq + s1 − qdhsb
2

s9d

and

Zq =E dHf1 + sq − 1dhq TrsH†Hdg−1/sq−1d. s10d

The nonextensive distributions8d is reduced to the statistical
weight of the Gaussian ensemble whenq=1.

It is important to note that the nonextensive distribution
Pbsq,hq,Hd is isotropic in the Hilbert space because the de-
pendence on the matrix elements ofH enters through
TrsH†Hd. In this way, Tsallis’ statistics offers a random-
matrix model for mixed systems, which is invariant under
change of basis unlike most of the models in the literature.
However, the distribution does not factorize into a product of
distributions corresponding to the individual matrix elements
if qÞ1. Physically, this implies that the starting hypothesis
of the standard RMT that the matrix elements are indepen-
dent random variables does not hold in the nonextensive con-
text described by Eq.s2d.

The formalism developed in this section was applied in
Ref. f18g to ensembles of 232 matrices. The calculation of
the spacing distribution showed different behavior depending
on whetherq is above or below 1. It is found that the sub-
extensive regime ofq.1 corresponds to the evolution of a
mixed system towards a state of order described by the Pois-
son statistics. On the other hand, the spectrum in the super-
extensive regime develops towards the picked-fence type,
such as the one obtained by Berry and Taborf23g for the
two-dimensional harmonic oscillator with noncommensurate
frequencies.

A. Subextensive regime

In this paper, we shall consider only the subextensive re-
gime, where q.1. We note that TrsH†Hd=oi=1

N sHii
s0dd2

+2og=0
b−1oi. jsHij

sgdd2, where all four matricesHsgd with g
=0,1,2,3 arereal and whereHs0d is symmetric whileHsgd

with g=1,2,3 areantisymmetric. We introduce the new co-
ordinatesy=hy1, . . . ,ydj, where d=N+bNsN−1d /2 and yi

2

stand for the square of the diagonal elements or twice the
square of the nondiagonal elements, respectively, and ex-
press the integrals in hyperspherical coordinates. The nor-
malization conditions3d yields
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Zqshqd = 2−bNsN−1d/2VdE
0

`

yd−1dyf1 + sq − 1dhqy
2g−1/sq−1d

= 2−bNsN−1d/2Vd

GS 1

q − 1
−

d

2
D

2fsq − 1dhqgd/2GSd

2
DGS 1

q − 1
D s11d

provided thatq,1+2/d, otherwise the integral diverges.
Here Vd=2pd/2/Gsd/2d is the area of a unitd-dimensional
hypersphere andGszd is Euler’s gamma function. Condition
s4d, now reads

sb
2 =E

0

`

yd+1dyf1 + sq − 1dhqy
2g−q/sq−1dYE

0

`

yd−1dy

3f1 + sq − 1dhqy
2g−q/sq−1d. s12d

The latter yield the following relationship betweenhq and
sb

2:

hq =
d

sb
2s2 + d − dqd

. s13d

For a Gaussian ensemble,sb
2 =2dv2, wherev2 is the variance

of each of the nondiagonal matrix elementssor each of their
componentsd, so thath1=1/s4v2d. Condition s4d thus im-
poses the following upper limit onq:

q , 1 +
2

d
, s14d

beyond which the nonextensive formalism is not applicable
for random matrix ensembles. This condition prevents the
evolution of a chaotic system towards a state of order from
reaching its terminal stage of the Poisson fluctuation statis-
tics, as we may see inf18g for the case ofN=2, and later in
this paper for the general case. The upper limit in Eq.s14d is
essentially the extensive limitsq→1+0d since RMT is
meant essentially for large matricessd→`d. For example,
the subextensive regime for a GOE of 20320 matrices is
associated with values ofq in the narrow range of 1,q
,1.1. In spite of this, a minor nonextensivity produces a
considerable effect on the spectral statistics of a large system
as demonstrated below. This is attributed to the existence of
the nontrivial “thermodynamic limit”Nsq−1d=constant, as
pointed out by Botetet al. f24g.

B. Integral representation

In the subextensive regime, the nonextensive RMT can
arise from the extensive one by allowing the variances of the
matrix elements to fluctuate using a transformation suggested
by Wilk and Włodarczykf25g and Beckf26g. From Euler’s
representation of the gamma functionf27g, Gsxd
=e0

`tx−1e−tdt, one can easily derive the following expression:

f1 + sq − 1dhq TrsH†Hdg−1/sq−1d

=
1

GS 1

q − 1
DE0

`

t1/sq−1d−1e−tf1+sq−1dhq TrsH†Hdgdt, s15d

which is possible ifq.1. We now change the integration
variable intoh=sq−1dhqt. The joint distribution of matrix
elements of a Tsallis random-matrix ensemble can then be
expressed as

Pbsq,hq,Hd =E
0

`

fnshd
Z1shd
Zqshqd

Pbsh,Hddh, s16d

where

Pbsh,Hd = Z1
−1e−h TrsH†Hd, s17d

with

Z1shd =E dHe−h TrsH†Hd =
2−bNsN−1d/2Vd

2hd/2Gsd/2d
s18d

the distribution function for a Gaussian random-matrix en-
semble with fluctuating matrix-element inverse variance
1/2h, and fnshd is the probability density of the
x2-distribution sthe distribution of sum of squares ofn nor-
mal variables with zero mean and unit varianced,

fnshd =
1

Gsn/2dS n

2hq
Dn/2

hn/2−1 expS−
nh

2hq
D , s19d

with order n=2/sq−1d and mean valuehq=nd/ f2sb
2sn

−ddg=n/ f4v2sn−ddg. Therefore the generalized distribution
function Pbsq,hq,Hd of nonextensive statistics is expressed
in terms of the distribution functionPbsh ,Hd of the corre-
sponding Gaussian random-matrix ensemble by averaging
over h, provided thath has ax2 distribution.

As mentioned above, the nonextensive Hamiltonian
matrix-element distribution in Eqs.s5d and s16d is invariant
under change of basis. The mean value of each matrix ele-
ment kHij

sgdl=0. On the other hand, the mean value of the
square of a matrix element

ksHij
sgdd2l =

1 + di j

4

n

hqsn − d − 2d
= s1 + di jdv2 n − d

n − d − 2
,

s20d

which is equal to the corresponding quantity in the standard
RMT when n→`, as expected. The distribution does not
factorize into a product of distributions of individual matrix
element, or matrix-element components, as in the standard
RMT. The relative dispersion of the squares of the matrix
elements

ksHij
sgdd2sHi8 j8

sg8dd2l − ksHij
sgdd2lksHi8 j8

sg8dd2l

ksHij
sgdd2lksHi8 j8

sg8dd2l
=

2

n − d − 4
s21d

vanishes only in the extensive limit ofn→`. We note that,
for a givenn and fixedv, the degree of correlation of matrix
element measured by the covariance of their squares in-
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creases with increasing the dimension of the ensemble. This
agrees with the result of nonextensive thermostatistics for the
partition function of a system withN subsystems, which
strongly suggests that the factorization approximation fails
whenN is largef29,30g.

C. Eigenvalue distribution

We now calculate the joint probability density for the ei-
genvalues of the HamiltonianH. With H=U−1XU, whereU
is the global unitary group, we introduce the elements of the
diagonal matrix of eigenvaluesX=diagsx1, . . . ,xNd of the ei-
genvalues and the independent elements ofU as new vari-
ables. Then the volume elements4d has the form

dH = uDNsXdubdXdmsUd, s22d

where DNsXd=pn.msxn−xmd is the Vandermonde determi-
nant anddmsUd the invariant Haar measure of the unitary
group f9,12g. The probability densityPbsHd is taken to be
invariant under arbitrary rotations in the matrix space,
Pbsh ,Hd=Pbsh ,U−1HUd. Integrating overU yields the joint
probability density of eigenvalues in the form

Pb
sqdshq,x1, . . . ,xNd =

GSn

2
D

sn/2dd/2GSn − d

2
DE0

`

fnshdShq

h
Dd/2

3Pb
s1dsh,x1, . . . ,xNddh, s23d

wherePb
s1dsh ,x1, . . . ,xNd is the eigenvalue distribution of the

corresponding Gaussian ensemble, which is given by

Pb
s1dsh,x1, . . . ,xNd = CbuDNsXdub expF− ho

i=1

N

xi
2G , s24d

whereCb is a normalization constant. Similar relations can
be obtained for the statistics that can be obtained from
Pb

sqdshq,x1, . . . ,xNd by integration.
Thek-point correlation functionf9,12g measures the prob-

ability density of finding a level near each of the positions
x1, . . . ,xk, the remaining levels not being observed. It is ob-
tained by integrating the eigenvalue joint probability density
s16d over N−k arguments

Rb,k
sqd shq,x1, . . . ,xkd =E

−`

`

dxk+1¯ E
−`

`

dxNPb
sqdsh,x1, . . . ,xNd.

s25d

Therefore the nonextensive generalization of thek-point
function of a Gaussian ensembleRb,k

s1d sh ,x1, . . . ,xkd is given
by

Rb,k
sqd shq,x1, . . . ,xkd =

1

GSm

2
DE0

` S nh

2hq
Dm/2

e−nh/2hqRb,k
s1d

3sh,x1, . . . ,xkd
dh

h
, s26d

where

m= n − d.

Noting thatn/2hq=2v2m, we can easily see that the main
parameter ism, which is subject to the restriction

0 , m, `. s27d

The lower limit follows from the normalization condition as
well as the constraint of finite average matrix norms4d. The
upper limit corresponds to the standard RMT.

III. LEVEL DENSITY

The main goal of RMT is to describe the fluctuations of
the energy spectra. Before the study of the fluctuations can
be attempted, one must make a separation between the local
level fluctuation from the overall energy dependence of the
level separation. The level density of the standard random
matrix ensembles is not directly related to the physical level
density of the investigated systems. Nevertheless, it is essen-
tial to the proper unfolding of the spectral fluctuation mea-
sures. For theN-dimensional GOE, the level density normal-
ized to 1 is given by Wigner’s semicircle law

r1s`,«d =
2

p
Îh/NÎ1 − h«2/N. s28d

Here «=x/v is the energy expressed in units of standard
deviation of the majority of matrix elements. In the follow-
ing, we derive a corresponding formula for the nonextensive
generalization of GOE, which we shall refer to as the Tsallis
orthogonal ensemblesTsOEd.

The level density is obtained by integrating the joint prob-
ability density of eigenvalues over all variables except one,
so that the level density of TsOErqsm,xd=R1,1

sqdshq,xd. There-
fore, using Eq.s28d for R1,1

s1d into Eq. s26d, we obtain

rqsm,«d =

s2mNdm/2GSm+ 1

2
D

ÎpGSm

2
DGSm

2
+ 2D u«u−m−1

1F1Sm+ 1

2
,
m

2
+ 2,

−
2mN

«2 D , s29d

where 1F1sa,b,zd is Kummer’s confluent hypergeometric
function f27g. At «=0, Eq.s27d yields

rqsm,0d =
1

p
Î 2

mN

GSm+ 1

2
D

GSm

2
D . s30d

Using the asymptotic properties ofGszd at largez f27g, we
can show that the height ofrqsm,«d at the origin is lower
than the GOE level density,r1s` ,0d=1/spÎNd, since the
ratio of the gamma functions in the right-hand side of Eq.
s30d is approximately equal toÎm/2f1−1/s4mdg for m@1.
At small m, where the relationGs1+zd=zGszd tells us that
Gsm/2d<2/m, the dependence ofrqsm,0d on m is mainly
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given by the factorÎm. On the other hand, the asymptotic
behavior ofrqsm,«d at largeu«u is given by

rqsm,«d , u«u−m−1. s31d

Decreasingm from very large values lowers the magnitude
of rqsm,«d at the origin below the semicircle form of the
Gaussian ensemble and raises its values at the periphery.
This effect is clearly demonstrated in the left panel of Fig. 1.
The behavior shown in this figure is similar to that of the
results of calculations by Toscanoet al. f15g.

In order to perform the statistical analysis of level fluc-
tuations of the energy levels, one must take into account that
the level density and hence the level spacing are strongly
dependent on the intrinsic energy. For this purpose, the in-
vestigated spectra are transformed into the so-called “un-
folded” spectraf28g for which the local mean spacing is 1.
On the other hand, calculations using RMT are performed for
levels near the origin, where the level density is nearly equal
to a constant proportional toÎh. The energy scale is so far
defined by the standard deviation of matrix elements, as, e.g.,
in Eq. s20d. It is more suitable to express the quantities hav-
ing the dimension of energy in terms of the mean level spac-
ing rather than standard deviation of matrix elements. For
this purpose we replace the rationh /2hq in Eq. s19d by h /h0
and defineh0 by the requirement that the mean level spacing
is 1. We then obtain for the nonextensive generalization any
statisticRb

GE of a Gaussian ensemble

Rb
smd =

1

GSm

2
DE0

` S h

h0
Dm/2

e−h/h0Rb
GEshd

dh

h
, s32d

whereh is now understood as the square of the level density.

IV. NEAREST-NEIGHBOR-SPACING DISTRIBUTION

The nearest-neighbor-spacing distributionsNNSDd is fre-
quently used for the analysis of experimental spectra. Unfor-
tunately, RMT does not provide a closed form expression for
NNSD. A very good approximation for this distribution is

given by the so-called Wigner surmisef9g, which is the exact
spacing distribution for Gaussian ensembles of 232 matri-
ces. In this section we shall assume this approximation. We
substitute the Wigner surmise for GOE and GUE into Eq.
s32d and obtain expressions for NNSD of the corresponding
Tallis ensembles.

A. Systems invariant under time reversal

Chaotic systems, whose Hamiltonians are invariant under
time reversal, are modeled in RMT by GOE. For these en-
sembles, the Wigner surmise is

PGOEsh,sd = hse−1/2hs2
, s33d

whereh is obtained by requiring thatPGOE has a mean spac-
ing equal to 1. Substituting Eq.s26d into Eq. s25d, we obtain
the following expression for the nonextensivesTsallisd or-
thogonal ensemble:

PTsOEsm,sd =

1

2
mh1s

S1 +
1

2
h1s

2D1+m/2 , s34d

where

h1 =
p

23GX1

2
sm− 1dC

GS1

2
mD 4

2

s35d

is obtained by requiring thate0
`sPTsOEsm,sdds=1.

In the limit of m→`, h0<p /m and the nonextensive
NNSD approaches the extensive one, which is peaked ats
=Î2/p<0.80. At the other limit wherem=1, the mean spac-
ing distribution diverges. If one also requires that the second
moment is finite, one increases the lower limit intom=2, for
which one obtainsh0=p2/2 and the NNSD becomes

PTsOEs2,sd =
p2s

s1 + p2s2d2 , s36d

which vanishes at the origin, has a peak ats=2Î2/spÎ3d
<0.52, and decays asymptotically ass−3. We therefore see
that increasing nonextensivity modifies the NNSD from a
Wigner form towards a Poisson distributione−s but never
reaches it. Equations34d agrees with the corresponding result
obtained for the 232 random matrix ensemble directly by
integrating the joint eigenvalue distributionf18g. This behav-
ior is explicitly demonstrated in that paper. We thus expect
the nonextensive RMT to describe the transition out of
chaos, at least in its initial stage. We note that our result for
the NNSD agrees with the corresponding distributions ob-
tained in Ref.f15g for the case of orthogonal universality.

Figure 2 compares the NNSD in Eq.s34d with the corre-
sponding results of a numerical experimentf31g. This experi-
ment imitates a one-parametersdenoted bydd transition be-
tween an ensemble of diagonal matrices with independently
and uniformly distributed elements and a circular orthogonal

FIG. 1. The level densitysnormalized to 1d for TsOE plotted
against energy eigenvalues expressed in units ofv for different
values of the parameterm.
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or unitary ensemble. The figure shows that the TsOE distri-
butions are generally in agreement with the numerical-
experimental distribution although the quality of agreement
gradually deteriorates, as expected, as the departure from
chaos increases.

B. Systems without time reversal symmetry

RMT models systems whose Hamiltonians violate time
reversibility by GUE. The corresponding Wigner surmise is

PGUEsh,sd =Î 2

p
h3/2s2e−1/2hs2

, s37d

whereh is obtained by requiring thatPGUE has a mean spac-
ing equal to 1. Substituting Eq.s37d into Eq. s32d, we obtain
the following expression for the nonextensivesTsallisd uni-
tary ensemble

PTsUEsm,sd =Î 2

p

GX1

2
s3 + mdC

GS1

2
mD

h2
3/2s2

S1 +
1

2
h2s

2Ds3+md/2 ,

s38d

where

h2 =
8

p3GX1

2
sm− 1dC

GS1

2
mD 4

2

s39d

is obtained by requiring thate0
`sPTsUEsm,sdds=1. The evo-

lution of the distributionPTsUEssd as m decreases from̀ ,
where it is given by the Wigner surmise, at the limiting value

of m=2 is demonstrated in Ref.f18g for the two-dimensional
case. Figure 3 compares the NNSD for the TsUE with the
corresponding distributions in the numerical experiment in
Ref. f31g. We again see that the proposed nonextensive RMT
provides a satisfactory description for the stochastic transi-
tion in terms of a single parameter, particularly in its early
stagef32g.

V. CONCLUSION

In the present work we have obtained a nonextensive gen-
eralization of the matrix-element theory by extremizing Tsal-
lis’s entropy, indexed byq, subjected to two constraints: nor-
malization and finite average norm of the matrices. We
consider the subextensive regime ofq.1, where the transi-
tion from chaos to order described by the Poisson statistics is
expected. The constraint of finite matrix-norm forces an up-
per limit of the entropic index, limiting the attainable range
to 1,q,1+2/d, whered is the dimension of the matrix-
element space. This is essentially the extensive limit since
RMT normally involves large matrices. Nonetheless, the ob-
tained fluctuation statistics depend mainly on the parameter
m=−d+2/sq−1d, so that a minor deviation from extensivity
leads to an observable effect. Because of this limitation, we
expect the nonextensive formalism to provide a description
for the early stages of transition from chaos towards regular-
ity. We obtain distribution functions for the three symmetry
universality classes, for which the probability of larger ma-
trix elements decay algebraically instead of exponentially.
By means of an integral transform, which is based on an
integral representation of the gamma function, we express
the characteristics of the nonextensive theory to those of the
standard RMT. We calculate the level density and the NNSD
for systems with mixed regular chaotic dynamics. We have
also derived a generalization for the Wigner surmise that can
be compared to numerical experiments with mixed systems.

FIG. 2. NNSD for TsOE, calculated using Eq.s34d compared
with the results of the numerical experiment byŻyczkowski and
Kuś f31g.

FIG. 3. NNSD for TsUE, calculated using Eq.s38d compared
with the results of the numerical experiment byŻyczkowski and
Kuś f31g.
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