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Nonextensive random matrix theory approach to mixed regular-chaotic dynamics
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We apply Tsallis’g-indexed entropy to formulate a nonextensive random matrix theory, which may be
suitable for systems with mixed regular-chaotic dynamics. The joint distribution of the matrix elements is given
by folding the corresponding quantity in the conventional random matrix theory by a distribution of the inverse
matrix-element variance. It keeps the basis invariance of the standard theory but violates the independence of
the matrix elements. We consider the subextensive regirgeraire than unity in which the transition from the
Wigner to the Poisson statistics is expected to start. We calculate the level density for different values of the
entropic index. Our results are consistent with an analogous calculation by Tsallis and collaborators. We
calculate the spacing distribution for mixed systems with and without time-reversal symmetry. Comparing the
result of calculation to a numerical experiment shows that the proposed nonextensive model provides a
satisfactory description for the initial stage of the transition from chaos towards the Poisson statistics.
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|. INTRODUCTION numbers. The matrix-element distribution has been obtained

. . . extremizing Shannon’s entropy subject to the constraint
The past decade has witnessed a considerable interest Cgekl'normalization and existence of the expectation value of

yote_d to_ nor_lconventional stz_itist_icf'i_l mechanics._Much _Workl—r(HTH) [10]. What has become known as the Bohigas-
in this direction followed the.|ll’.]e initiated b_y T;allls seminal iannoni-Schmidt conjecture is that the quantum spectra of
paper[1]. The standard statistical mechanics is based on thgjassically chaotic systems are correlated according to RMT,
Shannon entropy measur8=-3;p;Inp; (we use Boltz- \yhereas the spectral correlations of classically regular sys-
mann’s constankg=1), where{p;} denotes the probabilities tems are close to Poissonian statisfit]. Several attempts

of the microscopic configurations. This entropy is extensivehave been made to extend the applicability of RMT to in-
For a composite systerA+B, constituted of two indepen- clude quantum systems with mixed regular-chaotic classical
dent subsystemA and B such that the probabilitp(A+B) dynamics; for a review please s¢&2]. For example, the
=p(A)p(B), the entropy of the totaB(A+B)=S(A)+S(B).  principle of maximum entropy was used for this purpose by
Tsallis proposed a nonextensive generalizatigg=(1  introducing additional constraints concerning the off-
-3.p%/(q-1). The entropic index| characterizes the degree diagonal elementd13]. Nonextensive generalizations of

of extensivity of the system. The entropy of the compositeXMT. On the other hand, extremize Tsallis’ nonextensive en-
systemA+B, the Tsallis' measure verifies tropy, rather than Shannon’s. The first attempt in this direc-

tion is probably due to Evans and Michdé&H]. Toscanoet
S{A+B)=§(A) +§(B) + (1 -9)S(AS(B), (1)  al.[15] constructed a non-Gaussian ensemble by minimizing
) o ) Tsallis’ entropy and obtained expressions for the level densi-

from which the denunciation nonextensive comes. Thereforges and spacing distributions. Bertuokt al. [16] have

S(A+B) <§(A)+§(B) if g>1. This case is called subex- shown that Tsallis’ statistics interpolate between RMT and an
tensive. Ifq<1, the system is in the superextensive regimeensemble of Lévy matricelsl7] that have a wide range of
The standard statistical mechanics recoveredjfot. Appli-  applications. They illustrated the spectral fluctuations in the
cations of the Tsallis formalism covered a wide class of phesubextensive regime by considering the gap functdg)
nomena; for a review please see, €[g], However, the re- that gives the probability of finding an eigenvalue-free seg-
lation between the parameteq and the underlying ment of lengtts. Analytical expressions for the level-spacing
microscopic dynamics is not fully understood yet. The valuedistributions of mixed systems belonging to the three sym-
of g has been obtained from studies of dynamics in cases aghetry universality classes are obtained[8]. A slightly
low-dimensional dissipative mags,4], and in some toy different application of nonextensive statistical mechanics to
models of self-organized criticalityp]. Explicit expressions RMT is due to Nobre and SouZ49].
for g in terms of physical quantities exist in few cases, e.g., In this work we use the integral representation of the
in turbulence problem§6] and physics of the solar plasma gamma function to express the characteristics of the pro-
[7]. Aringazian and Mazhitoy8] obtained a Tsallis distribu- posed nonextensive RMT in terms of integrals involving the
tion function for a smaller subsystem weakly interacting withcharacteristics of the conventional theory. We show that non-
the remaining “quasi-thermostat” composed of a larger numextensive statistics provides a principled way to accommo-
ber M of particles, with an entropic index—1~1/M. date systems with mixed regular-chaotic dynamics.

A number of recent publications considered the possibility
of a nonextensive generalization to the random matrix theory Il. NONEXTENSIVE GENERALIZATION OF RMT
(RMT) [9]. This is the statistical theory of random matrices RMT replaces the Hamiltonian of the system by an en-
H whose entries fluctuate as independent Gaussian randosemble of Hamiltonians whose matrix elements are indepen-
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three generic ensembles of random matrices, defined in terms (6)
of the symmetry properties of the Hamiltonian. Time-

reversal-invariant quantum system are represented by and

Gaussian orthogonal ensemll@OE) of random matrices

when the system has rotational symmetry and by a Gaussian 7 — J dH[1 +(q- D7{Tr(HTH) - o2 YD (7)
symplectic ensembleGSE otherwise. Chaotic systems a d A

without time reversal invariance are represented by th
Gaussian unitary ensembl8UE). The dimensiong of the
underlying parameter space is used to label these three e
sembles: for GOE, GUE, and GSRB,takes the values 1, 2, Ps(q,H) :zal[l +(q-1)7, Tr(HTH)Y@ D (8)
and 4, respectively. Baliail0] derived the weight functions

P4(H) for the three Gaussian ensembles from the maximunyvhere

entropy principle postulating the existence of a second mo- 7

ment of the Hamiltonian. He applied the conventional Shan- Nq= 9
non definition for the entropy to ensembles of random ma- de[pB(q,H)]qJ, (1 ‘Q)ﬂUé

trices asS=—/dHP4(H)In P4(H) and maximized it under the

constraints of normalization d?5(H) and fixed mean value 5.4
of Tr(H™H). He obtainedPz(H) exf-» Tr(H'H)] which is

a Gaussian distribution with inverse variance %/2n this
section, we apply the maximum entropy principle, with Tsal-

lis” entropy, to random-matrix ensembles belonging to the ) . . -
three canonical symmetry universalities. The Tsallis entropy € Nonextensive distributiof®) is reduced to the statistical

is defined for the joint matrix-element probability density Weight of the Gaussian ensemble wiggnl.
P4(q,H) by It is important to note that the nonextensive distribution

P4(d, 174,H) is isotropic in the Hilbert space because the de-

pendence on the matrix elements bf enters through
Sq[Pﬁ(q,H)]:(1—de[pﬁ(q,H)]Q>/(q_1)_ (2) Tr(H_TH). In this way, Tsallis’ statistics offers a random-

matrix model for mixed systems, which is invariant under

) change of basis unlike most of the models in the literature.
We shall refer to the corresponding ensembles as the Tsalligoever, the distribution does not factorize into a product of

orthogonal ensembl€TsOB), the Tsallis unitary ensemble gjstributions corresponding to the individual matrix elements
(TsUB), and the Tsallis symplectic ensemilEsSB. Forq it g 1. Physically, this implies that the starting hypothesis
— 1, §; tends to Shannon’s entropy, which yields the canoni the standard RMT that the matrix elements are indepen-
cal Gaussian orthogonal, unitary, or symplectic ensemblegent random variables does not hold in the nonextensive con-
(GOE, GUE, GSE[9,10]. . . text described by Eq2).

There is more than one formulation of nonextensive sta- The formalism developed in this section was applied in
tistics which mainly differ in the definition of the averaging. et [18] to ensembles of X 2 matrices. The calculation of
Some of them are discussed|[@il]. We apply the most re-  the gpacing distribution showed different behavior depending
cent formulation22]. The probability distributiorPs(q,H)  on whetherg is above or below 1. It is found that the sub-
mixed system towards a state of order described by the Pois-
son statistics. On the other hand, the spectrum in the super-
extensive regime develops towards the picked-fence type,
such as the one obtained by Berry and Taf#8] for the
two-dimensional harmonic oscillator with noncommensurate
frequencies.

dent random numbers. Dysdi20] showed that there are 5
Nq=17 de[F‘B(q,H)]q

§t turns out that the distributiofb) can be written hiding the
R[esence ofrz in a more convenient form

Z,= f dH[1 + (g - 1) 5 Tr(H™H) ], (10)

dePﬁ(q,H) =1, 3)

j dH[P(g,H)]9Tr(H™H)

= 0—% (4) A. Subextensive regime

f dH[PB(q,H)]q In this paper, we shall consider only the subextensive re-
gime, where q>1. We note that TH'H)=3},(H?)2
+22§;32i>j(Hi(j”)2, where all four matricesH” with y
=0,1,2,3 areeal and whereH© is symmetric whileH”
with y=1,2,3 areantisymmetric. We introduce the new co-
5 ordinatesy=1{yy, ... ,ya}, where d=N+aN(N-1)/2 andy?
Pa(a.H) =Z ' [1+(q- D)7{Tr(H™H) - 0517, (5)  stand for the square of the diagonal elements or twice the
square of the nondiagonal elements, respectively, and ex-
where7,>0 is related to the Lagrange multiplier associ-  press the integrals in hyperspherical coordinates. The nor-
ated with the constraint in E¢4) by malization condition(3) yields

where o is a constant. The optimization &, with these
constraints yields a power-law type fBy;(q,H)
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~BN(N- e e [1+(q— 1) p, Tr(HH)] YD
Zq(77q) = 2 AN(N 1)/2de yd 1dy[1 +(q-1) 77qy2] 1/(q-1) q

0 - 1 J t2(a-D-1gt{1+(a-D) 7 Tr(HTH)]dt, (15)
( 1 d) ( 1 ) 0
rN—--—-= I —
q-1 2 q-1
2(q- 1) g9 2)r which is possible ifg>1. We now change the integration
q "o 2/ \g-1 variable into »=(q—1) nt. The joint distribution of matrix
elements of a Tsallis random-matrix ensemble can then be

provided thatq<1+2/d, otherwise the integral diverges. €xpressed as
Here Qy=2792/T"(d/2) is the area of a unit-dimensional

= o ANN-DI2)

(11

” z
hypersphere andl(z) is Euler's gamma function. Condition Ps(d, 76,H) :f fu(m) 1(7) Pg(n,H)dn, (16)
(4), now reads 0 Zy( )
where
02=f0 YL+ (@ Dy T / fo ¥y Py H) =Zle 7 T, 17)
X[1+(q- 1) ygy? Y. az "
. . . . Zi(np) = f dHe—nTF(HTH) = w (18)
The latter yield the following relationship betweef and 1 27920 (d/2)
F the distribution function for a Gaussian random-matrix en-
d semble with fluctuating matrix-element inverse variance

(13 1/2n, and f,(y) is the probability density of the
x>-distribution (the distribution of sum of squares afnor-
mal variables with zero mean and unit variance

Wz rd-da’

For a Gaussian ensembl€,=2dv?, wherev? is the variance o
of each of the nondiagonal matrix elemefus each of their f(n) = 1 (L) 2 exp(— ﬂ) (19)
components so that 7,=1/(4v?). Condition (4) thus im- : I'(n/2) ’

27q Tq
poses the following upper limit og; with order n=2/(q—1) and mean valuenq:nd/[Zozﬁ(n

5 -d)]=n/[4v%(n-d)]. Therefore the generalized distribution
q<1+-=-, (14) function P4(q, 774, H) of nonextensive statistics is expressed
d in terms of the distribution functio®4(7,H) of the corre-
sponding Gaussian random-matrix ensemble by averaging
beyond which the nonextensive formalism is not applicableyver 7, provided thaty has ay? distribution.
for random matrix ensembles. This condition prevents the As mentioned above, the nonextensive Hamiltonian
evolution of a chaotic system towards a state of order fronmatrix-element distribution in Eq$5) and (16) is invariant
reaching its terminal stage of the Poisson fluctuation statisunder change of basis. The mean value of each matrix ele-
tics, as we may see {18 for the case oN=2, and later in - ment (H”)=0. On the other hand, the mean value of the
this paper for the gener_al case. The upper !|m|t in @4) IS square of a matrix element
essentially the extensive limiig—1+0) since RMT is
meant essentially for large matricéd— o). For example, ((H-(-V) = (14802
the subextensive regime for a GOE of 2@0 matrices is 1 4 pn-d-2) Y h-d-2’
associated with values daf in the narrow range of £ (20)
<1.1. In spite of this, a minor nonextensivity produces a
considerable effect on the spectral statistics of a large systemhich is equal to the corresponding quantity in the standard
as demonstrated below. This is attributed to the existence &®MT when n—oo, as expected. The distribution does not
the nontrivial “thermodynamic limit'N(q-1)=constant, as factorize into a product of distributions of individual matrix
pointed out by Boteet al. [24]. element, or matrix-element components, as in the standard
RMT. The relative dispersion of the squares of the matrix
elements

B. Integral representation

In the subextensive regime, the nonextensive RMT can <“"i(iw)z(Hi('yj’))2>_<("'i(J'Y))ZX(Hi(’yj/))2> __ 2
arise from the extensive one by allowing the variances of the ((H-(-V))Z)<(H.(,Y'))2) " n-d-4
matrix elements to fluctuate using a transformation suggested . s
by Wilk and WiodarczyK 25] and Beck[26]. From Euler’s  vanishes only in the extensive limit of— . We note that,
representation of the gamma functiod27], I'(x)  for a givenn and fixedv, the degree of correlation of matrix
=[5 le"'dt, one can easily derive the following expression: element measured by the covariance of their squares in-

(21)
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creases with increasing the dimension of the ensemble. This m=n-d.
agrees with the result of nonextensive thermostatistics for the ) ) .
partition function of a system wittN subsystems, which Noting thatn/2z,=2v"m, we can easily see that the main
strongly suggests that the factorization approximation faild@rameter isn, which is subject to the restriction

whenN is large[29,30. o< m< oo, 27

C. Eigenvalue distribution The lower limit follows from the normalization condition as
We now calculate the joint probability density for the ei- well as the constraint of finite average matrix nof#). The
genvalues of the HamiltoniaH. With H=U"'XU, whereU  upper limit corresponds to the standard RMT.
is the global unitary group, we introduce the elements of the
diagonal matrix of eigenvalue$=diagxy, ... ,xy) of the ei-
genvalues and the independent elementt) afs new vari- IIl. LEVEL DENSITY

ables. Then the volume eleme) has the form The main goal of RMT is to describe the fluctuations of

dH = |AN(X)|PdXdu(U), (22)  the energy spectra. Before the study of the fluctuations can

. . be attempted, one must make a separation between the local
where An(X) =ly-m(X,~%m) is the Vandermonde determi- |gye| fluctuation from the overall energy dependence of the
nant anddu(U) the invariant Haar measure of the unitary jeve| separation. The level density of the standard random
group[9,12]. The probability densityP(H) is taken to be  matrix ensembles is not directly related to the physical level

invariant under arbitrary rotations in the matrix space,density of the investigated systems. Nevertheless, it is essen-
Ps(7,H)=P4(5,U™HU). Integrating ovetJ yields the joint  tjal to the proper unfolding of the spectral fluctuation mea-

probability density of eigenvalues in the form sures. For thé-dimensional GOE, the level density normal-
n ized to 1 is given by Wigner’s semicircle law
F(E) » 76\ 92 5
P(Bq)(ﬂq'XL cXN) = f fn(ﬂ)<_7]q) p1(*,8) = 7_T\“‘J77/N\‘"1 - e?IN. (28)
0

azps( N d
(n/2)Y<| ——
2 Here e=x/v is the energy expressed in units of standard
ng)(mxm .. X7, (23) Qeviation of the majority of matrix elements. In the follow-
ing, we derive a corresponding formula for the nonextensive
wherePfBl)(p,xl, ..., Xy) is the eigenvalue distribution of the generalization of GOE, which we shall refer to as the Tsallis
corresponding Gaussian ensemble, which is given by orthogonal ensembl€lsOB).
N The level density is obtained by integrating the joint prob-
PO (X, .. x0) = Cal Ay expl - 2| (24 ability density of eigenvalues over all variables except one,
A (7% v ﬁ' v P 77;1 ! @9 so that the level density of qug(m,x)=R(1Q)l(nq,x). There-
) ,

H (1) - .
whereCg is a normalization constant. Similar relations canfore’ using Eq/28) for Ry into Eq.(26), we obtain

be obtained for the statistics that can be obtained from m+ 1
(@ ; ; (2mN™r| ——
Ps (7g,%1, -+ Xn) by integration. 2 o m+1m
Thek-point correlation functiofi9,12] measures the prob-  pq(M,e) = N I ™y > 5" 2,
ability density of finding a level near each of the positions w:r(-)r(- + 2)
X1, .- Xk the remaining levels not being observed. It is ob-
tained by integrating the eigenvalue joint probability density 2mN
(16) over N—k arguments ~ 2 ) (29
R;g;((”q!xla ,Xk):f ka+1“‘J dXNPfg)(n,Xl, XN wherg Fi(a,b,2) is Kummer’s_ confluent hypergeometric
o0 o0 function[27]. At £=0, Eq.(27) yields
(25) I m+1
Therefore the nonextensive generalization of t#ipoint 1 2 2
function of a Gaussian ensemtﬂ%l'{((n,xl, ..., %) is given pg(m,0) = e \ mN m (30
by =
2
1 ? [ ny\m2 . . .
R(ﬁ(],L(quxlr LX) = —f — e‘“'i’z’ing{( Using the asymptotic properties fz) at largez [27], we
F(’“) 0 \27g can show that the height of;(m,¢) at the origin is lower
2 than the GOE level density);(,0)=1/(7VN), since the
d7 ratio of the gamma functions in the right-hand side of Eq.
X (P Xy oo X)—, (26) (30) is approximately equal tam/2[1-1/(4m)] for m>1.
K At small m, where the relatiod’(1+z)=zI"(z) tells us that
where I'(m/2)~2/m, the dependence gf;(m,0) on m is mainly
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0.08 T T - given by the so-called Wigner surmig®l, which is the exact
spacing distribution for Gaussian ensembles &f2 matri-
ces. In this section we shall assume this approximation. We
substitute the Wigner surmise for GOE and GUE into Eq.
(32) and obtain expressions for NNSD of the corresponding
Tallis ensembles.

0.06

p(e)

0.04

A. Systems invariant under time reversal

0.02 . I . :
Chaotic systems, whose Hamiltonians are invariant under

time reversal, are modeled in RMT by GOE. For these en-
sembles, the Wigner surmise is

. PCOE(5,5) = yse 11275, (33)

. . . GOE
FIG. 1. The level densitynormalized to 1 for TsOE plotted where is obtained by requiring that has a mean spac-

against energy eigenvalues expressed in units é6r different ing equal to 1. Substituting E¢26) into Eq.(25), we obtain
values of the parameten. the following expression for the nonextensivEsallis) or-

thogonal ensemble:

given by the factor/m. On the other hand, the asymptotic 1
behavior ofp,(m, ) at large|s| is given by o >MmS
P m,s) = ————5=5, (39
— -m-1 1+m/2

pg(m.e) ~ [e| ™™, (31) (1+ %msz>
Decreasingm from very large values lowers the magnitude
of py(m,e) at the origin below the semicircle form of the where
Gaussian ensemble and raises its values at the periphery. )
This effect is clearly demonstrated in the left panel of Fig. 1. F(}(m— 1))
The behavior shown in this figure is similar to that of the 2
results of calculations by Toscam al. [15]. m= ol /1) (39

In order to perform the statistical analysis of level fluc- F<§m>

tuations of the energy levels, one must take into account that

the level density and hence the level spacing are stronglis obtained by requiring theﬁg’sPTSOE(m,s)dszl.

dependent on the intrinsic energy. For this purpose, the in- |n the limit of m—o, 7,~/m and the nonextensive
vestigated spectra are transformed into the so-called “UnyNSD approaches the extensive one, which is peakesl at
folded” spectrg 28] for which the local mean spacing is 1. =,2/7~0.80. At the other limit wheren=1, the mean spac-
On the other hand, calculations using RMT are performed fojng distribution diverges. If one also requires that the second
levels near the origin, where the level density is nearly equahoment is finite, one increases the lower limit ime 2, for

to a constant proportional td?y. The energy scale is so far which one obtainsy,=72/2 and the NNSD becomes
defined by the standard deviation of matrix elements, as, e.g.,

in Eq. (20). It is more suitable to express the quantities hav- PTSOE ) = s (36)
ing the dimension of energy in terms of the mean level spac- 1+ 722
ing rather than standard deviation of matrix elements. For . o = =
this purpose we replace the ratig/ 27, in Eq. (19) by 7/ 7, which vanishes at the origin, has a_peaksalZvZ/(msS)
and definer, by the requirement that the mean level spacing™0-52, and decays asymptotically sS'. We therefore see
is 1. We then obtain for the nonextensive generalization ang:/?‘t increasing nonextensivity modifies the NNSD from a
statisticRCE of a Gaussian ensemble igner form towards a Poisson distributi@® but never
p reaches it. Equatio(84) agrees with the corresponding result
R — 1 f’ <ﬁ>m’2 R )dr; (32) obtained for the X 2 random matrix ensemble directly by
B~ m o \ 7 € B\ integrating the joint eigenvalue distributiph8]. This behav-
F(z) ior is explicitly demonstrated in that paper. We thus expect
the nonextensive RMT to describe the transition out of
where 7 is now understood as the square of the level densitychaos, at least in its initial stage. We note that our result for
the NNSD agrees with the corresponding distributions ob-
. i tained in Ref[15] for the case of orthogonal universality.
IV. NEAREST-NEIGHBOR-SPACING DISTRIBUTION Figure 2 compares the NNSD in E€4) with the corre-
The nearest-neighbor-spacing distributiddNSD) is fre-  sponding results of a numerical experimg3it]. This experi-
guently used for the analysis of experimental spectra. Unforment imitates a one-paramet@lenoted bys) transition be-
tunately, RMT does not provide a closed form expression fotween an ensemble of diagonal matrices with independently
NNSD. A very good approximation for this distribution is and uniformly distributed elements and a circular orthogonal
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1-0 T T T T T T 1-0 T T T T T T
5=09 5=09
m=34.4 m=915
08| T 0.8} .
06} =+ 06} ]
£ £
oAl 4 04} -
0.2 - 02} .
L 1 L 00 1 1
R R S o 1 2 0
FIG. 2. NNSD for TsOE, calculated using E(®4) compared FIG. 3. NNSD for TsUE, calculated using E(8) compared
with the results of the numerical experiment Byczkowski and  with the results of the numerical experiment Byczkowski and
Kus [31]. Kus [31].

. ) ..of m=2 is demonstrated in Rgf18] for the two-dimensional
or unitary ensemble. The figure shows that the TsOE dlStI’Ibase Figure 3 compares the Nl]\lSD for the TSUE with the
butlons are ggngrally In agreement W'th. the numerICal'corresponding distributions in the numerical experiment in
experimental distribution although the quality of agreementg ¢ [31]. We again see that the proposed nonextensive RMT

grr]adua_lly deteriorates, as expected, as the departure frof}qiges a satisfactory description for the stochastic transi-
chaos Increases. tion in terms of a single parameter, particularly in its early

, ) stage[32].
B. Systems without time reversal symmetry

RMT models systems whose Hamiltonians violate time V. CONCLUSION

reversibility by GUE. The corresponding Wigner surmise is  In the present work we have obtained a nonextensive gen-
eralization of the matrix-element theory by extremizing Tsal-
POUE(5,5) = \/E 7]3/2826—1/27752 (37) lis's entropy, indexed by, subjected to two constraints: nor-

' T ' malization and finite average norm of the matrices. We
consider the subextensive regime# 1, where the transi-
tion from chaos to order described by the Poisson statistics is
expected. The constraint of finite matrix-norm forces an up-
per limit of the entropic index, limiting the attainable range
tary ensemble to 1<q<1+2/d, whered is the dimension of the matrix-

1 element space. This is essentially the extensive limit since
> F(§(3 +m)) 3122 RMT normally involves large matrices. Nonetheless, the ob-
PTSYSm,s) = \/j 2 Tt tained fluctuation statistics depend mainly on the parameter
™ F(}m> (1 . 17;232) m=-d+2/(q-1), so that a minor deviation from extensivity
2 2 leads to an observable effect. Because of this limitation, we
(39) expect the nonextensive formalism to provide a description
for the early stages of transition from chaos towards regular-
where ity. We obtain distribution functions for the three symmetry
1 2 universality classes, for which the probability of larger ma-
F(—(m— 1)) trix elements decay algebraically instead of exponentially.
_ 2 (39) By means of an integral transform, which is based on an
2 T F(l ) integral representation of the gamma function, we express

where 7 is obtained by requiring th&®VE has a mean spac-
ing equal to 1. Substituting E¢37) into Eq.(32), we obtain
the following expression for the nonextensi¢Esallis) uni-

the characteristics of the nonextensive theory to those of the
standard RMT. We calculate the level density and the NNSD
is obtained by requiring thaffysP™Y§m,s)ds=1. The evo-  for systems with mixed regular chaotic dynamics. We have
lution of the distributionP™VHs) as m decreases frome,  also derived a generalization for the Wigner surmise that can
where it is given by the Wigner surmise, at the limiting valuebe compared to numerical experiments with mixed systems.
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